If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2+3q-54=0
a = 3; b = 3; c = -54;
Δ = b2-4ac
Δ = 32-4·3·(-54)
Δ = 657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{657}=\sqrt{9*73}=\sqrt{9}*\sqrt{73}=3\sqrt{73}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{73}}{2*3}=\frac{-3-3\sqrt{73}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{73}}{2*3}=\frac{-3+3\sqrt{73}}{6} $
| -8+-5k+-8+-10k+-7k= | | 4/3=236/x | | -32z+4=36 | | 1/3=236/x | | 3/1=x/236 | | t(t)=50+73t−3t2 | | 3–2x7=–6 | | Y+x=3+x | | 5x-41=15 | | 10r=1000000 | | x+18=x+17-3x | | h-7=54 | | n÷9=8 | | 90x+90=900 | | 5x13=12 | | 1/2x-7=1/1/3(x-1) | | 3(x+2x)=72 | | 3m/6=7 | | 3x-6=12.5 | | 3(x−6)=7(x+6) | | 8c−32=6c | | 8x−22=10 | | 68y=3y-4 | | 3n-5+44°=90 | | 3n-5+44°=180 | | 10x+3+9x-7=180 | | 9x−21=708 | | 15=(-y) | | X=4x+5≤3+6x | | 0=(3n) | | 5•x=15 | | x+51=107.3 |